MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

- SHEFTER, E., CHMIELEWICZ, Z. F., BLOUNT, J. F., BRENNAN, T. E., SACKMAN, B. F. & SACKMAN, P. (1972). J. Pharm. Sci. 61, 872-877.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1984). C40, 422-426

Structures of 5-[3-(4-Carbamoyl-4-piperidinopiperidino)propyl]-3-chloro-10,11-dihydro-5H-dibenz[$b_{s}f$]azepine (A),* C₂₈H₃₇ClN₄O, 3-Chloro-5-[3-(2-0x0-1,2,3,5,6,7,8,8aoctahydroimidazo[1,2-a]pyridine-3-spiro-4'-piperidino)propyl]-10,11-dihydro-5Hdibenz[$b_{s}f$]azepine (B), C₂₈H₃₅ClN₄O, and 5-[3-(2-Ox0-1,2,3,5,6,7,8,8a-octahydroimidazo[1,2-a]pyridine-3-spiro-4'-piperidino)propyl]-10,11-dihydro-5H-dibenz-[$b_{s}f$]azepine (C), C₂₈H₃₆N₄O

By Ikuhiko Ueda

College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810, Japan

and Chiaki Tashiro

Research Center, Yoshitomi Pharmaceutical Ind. Ltd, 950 Koiwai, Yoshitomi-cho, Fukuoka 871, Japan

(Received 22 August 1983; accepted 12 October 1983)

Abstract. (A): $M_r = 481.09$, monoclinic, C2/c, a =27.81 (1), b = 8.589 (2), c = 22.14 (1) Å, $\beta = 102.82$ (4)°, U = 5164 (4) Å³, Z = 8, $D_m = 1.23$, $D_x = 1.24$ Mg m⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 0.23$ 0.179 mm^{-1} , T = 298 K, F(000) = 2064, R = 0.0639for 2566 observed reflexions. (B): $M_r = 479.07$, triclinic, P1, a = 11.515 (5), b = 11.837 (5), c = 10.744 (3) Å, a = 92.71 (3), $\beta = 112.73$ (3), $\gamma = 68.76$ (3)°, U = 1255 (1) Å³, Z = 2, $D_m = 1.26$, $D_x = 1.28$ Mg m⁻³, μ (Mo Ka) = 0.184 mm⁻¹, T = 298 K, F(000) = 512, R = 0.0658 for 3114 observed reflexions. (C): $M_r = 444.63$, monoclinic, A2/a, a =27.29 (1), b = 10.254 (5), c = 18.108 (5) Å, $\beta =$ 97.20 (2)°, U = 5027 (3) Å³, Z = 8, $D_m = 1.17$, D_x $= 1.18 \text{ Mg m}^{-3}$, $\mu(\text{Mo } K\alpha) = 0.078 \text{ mm}^{-1}$, T = 298 K, F(000) = 1920, R = 0.0620 for 2851 observed reflexions. These three antischizophrenia drugs each form dimers by paired intermolecular O...H(N) hydrogen bonds at the carbamoyl moieties. The ethylene radical in the dibenzazepine ring is in plane with one benzene ring and is out of plane for the other. The Cl atom of the first compound is connected to the out-of-plane benzene ring at the position meta to the N atom. That of the second compound is connected to the in-plane benzene ring at the same position.

Introduction. Compounds (A), (B) and (C) are very similar as shown in Fig. 1. However, the pharma-

* IUPAC name: 1'-[3-(3-chloro-10,11-dihydro-5*H*-dibenz[*b*,*f*]azepin-5-y1)propy1][1,4'-bipiperidine]-4'-carboxamide. cological spectra and activities for antischizophrenia are remarkably different. The X-ray analyses were carried out to study these pharmacological differences from the viewpoint of the molecular conformations.

Experimental. Experimental data are shown in Table 1. Density measured by flotation in KI solution. Colorless crystals of these compounds ground manually to spheres of diameters of about 0.5 mm. Rigaku AFC-5 four-circle automated diffractometer with graphite-monochromatized Mo K α radiation. Cell dimensions derived from least-squares treatment of the setting angles for 20 reflexions. ω -2 θ scan technique, scan rate 8° min⁻¹ for ω . Three standard reflexions measured every 100 reflexions: no significant variations in

Table 1. Experimental data

Compound	(A)	(B)	(C)		
Maximum 2θ (°)	45	50	50		
Range of h,k,l	$\pm h, k, l$	$h,\pm k,\pm l$	$h,k,\pm l$		
Standard reflections	204, 020, 602	112, 111, 121	220, 022, 204		
Intensities measured	$3248 [F > \sigma(F)]$	3636 (all)	$3630 [F > \sigma(F)]$		
Unique intensities	2847 $[F > \sigma(F)]$	3546 (all)	$3328 [F > \sigma(F)]$		
Intensities $>2.5\sigma(F)$	2566	3114	2851		
R	0.0639	0.0658	0.0620		
wR (w = 1.0)	0.0586	0.0747	0.0623		
S	3.12	1.18	2.57		
Residual density (e Å ⁻³)	<0.95	<0.62	<0.22		
$(\overline{\Delta/\sigma})_{max}$ for non-H	0.87	0.25	0.67		
atoms	(except disor- dered parts)				

© 1984 International Union of Crystallography

Fig. 1. The chemical structures of (a) compound (A), (b) compound (B) and (c) compound (C), with the atom-numbering schemes.

Fig. 2. Stereoscopic views of (a) compound (A), (b) compound (B).

Fig. 2 (cont.). (c) Stereoscopic view of compound (C).

intensities. Lorentz and polarization corrections applied, but absorption ignored. Structures for all compounds solved using MULTAN (Germain, Main & Woolfson, 1971). All coordinates, anisotropic thermal parameters for non-H and isotropic ones for H atoms refined by block-diagonal least squares; $\sum w(|F_o| - |F_c|)^2$ minimized, w = 1.0. The large residual electron densities of compound (A) are due to the trace of the Cl atom of the opposite side in the dibenzazepine ring; those of compound (B) are due to the H atoms which were not introduced for the disordering of the terminal piperidino rings. Atomic scattering factors and anomalous-dispersion factors from International Tables for X-ray Crystallography (1974). No corrections for secondary extinction. Calculations performed on a FACOM M-200 computer at the Computer Center of Kyushu University using the UNICSIII program system (Sakurai & Kobayashi, 1979).

Table 2. Fractional coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters (\dot{A}^2) for non-H atoms

Table 2 (cont.)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	isotropic the	ermal parar with e.s.d.	neters (A ²) 's in parenti	jor non-н heses	atoms		x	У	Z	B_{eq}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ב מ	$\sum P a^*a^*p$	a		Compound (C) O	4631 (1)	1020 (3)	2542 (1)	4.69 (8)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$B_{eq} = \frac{1}{3}2$	_ا ، مرک _{ا ا} مر	a _j .	_	N(1) N(2)	3561 (1) 4010 (1)	-5673 (3) -2129 (3)	2819 (2) 1826 (2)	4.15 (9) 3.81 (8)
$ \begin{array}{c} \begin{array}{c} \mbox{cmpound} (c) \\ \mbox{cmpound} (c$		x	У	Z	B_{eq}	N(3)	4180 (1)	1442 (3)	681 (2)	4.04 (9)
	Compound (A)	2093 (1)	509 (2)	3556 (1)	6.81 (5)	N(4) C(1)	4765 (1) 2792 (2)	2236 (3) 6244 (6)	1007 (3)	4·36 (9) 7·78 (19)
	0	168 (1)	-2181 (4)	6758 (1)	3.89 (9)	C(2)	3181 (2)	-6314 (4)	1575 (2)	5.43 (13)
	N(1)	1111 (1)	4370 (4)	4563 (2) 5735 (2)	3.64 (10)	C(3)	3152 (2)	-5671 (4)	2246 (2)	4.44 (11)
	N(2) N(3)	1342 (1)	-3798 (4)	7180 (2)	3.13 (10)	C(4) C(5)	3879 (2)	7305 (5)	3726 (3)	5-45 (13)
$ \begin{array}{c} $	N(4)	688 (1)	-2253 (6)	7682 (2)	4.96 (13)	C(6)	3870 (2)	-7989 (5)	4390 (3)	7.07 (17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) C(2)	2053 (2)	2583 (6)	4089 (2)	3.75 (13)	C(7) C(8)	3495 (2)	-6932 (6)	4560 (3)	7.48 (19)
$ \begin{array}{c} C(0) & 88 (2) & 373 (3) & 428 (1) & 428 (1) & 44$	C(3)	1563 (2)	3889 (5)	4427 (2)	3.33(12)	C(9)	3124 (2)	-6203 (5)	3898 (3)	5.67 (14)
$ \begin{array}{c} C(r) & 22 (2) & 692 (7) & 1324 (1) & 641 (21) & C(12) & 1740 (2) & -937 (6) & 1290 (2) & 542 (4) \\ C(r) & 886 (2) & 842 (6) & 335 (3) & 5-19 (1) & C(14) & 238 (2) & -3534 (7) & 1115 (3) & 848 (7) \\ C(r) & 113 (2) & 7156 (6) & 404 (3) & 421 (10) & C(14) & 238 (2) & -3514 (7) & 1115 (3) & 848 (7) \\ C(10) & 113 (2) & 7156 (6) & 404 (3) & 421 (10) & C(14) & 238 (2) & -3514 (7) & 1115 (3) & 848 (7) \\ C(11) & 113 (2) & 720 (6) & 506 (2) & 422 (10) & C(17) & 4002 (2) & -3191 (6) & 258 (2) & 442 (11) \\ C(13) & 2419 (2) & 4338 (7) & 4529 (3) & 5.15 (16) & C(19) & 3740 (1) & 111 (6) & 1138 (2) & -458 (6) \\ C(14) & 786 (2) & 305 (7) & 4487 (2) & 452 (16) & C(19) & 3740 (1) & 111 (6) & 1138 (2) & -458 (16) \\ C(14) & 786 (2) & 305 (7) & 4487 (2) & 452 (13) & 2023 (4413 (11) & 2205 (4) & 1299 (2) & 439 (1) \\ C(16) & 786 (2) & 300 (6) & 520 (2) & 3.44 (13) & C(22) & 4330 (2) & 3231 (13) & -488 (16) & 399 (2) & -389 (2) \\ C(17) & 681 (2) & 801 (6) & 520 (2) & 3.44 (13) & C(22) & 4330 (2) & 3231 (13) & -488 (16) & -488 $	C(4)	896 (2) 432 (2)	5725 (5) 5634 (6)	4240 (2)	3·48 (13) 4·79 (16)	C(10)	2702 (2)	5276 (7) 4307 (6)	3713 (3)	8·25 (21) 7·16 (18)
$ \begin{array}{c} C(1) & 438 (2) & 839 (7) & 538 (1) & 6-39 (41) \\ C(10) & 1633 (2) & 748 (7) & 473 (2) & 521 (4) \\ C(10) & 1633 (2) & 748 (7) & 473 (2) & 521 (4) \\ C(11) & 1916 (2) & 6208 (6) & 564 (2) & 432 (15) \\ C(12) & 1979 (2) & 4431 (6) & 4660 (2) & 423 (14) \\ C(13) & 2149 (2) & 4431 (6) & 4660 (2) & 423 (14) \\ C(13) & 2149 (2) & 4431 (6) & 4660 (2) & 423 (16) \\ C(14) & 2468 (2) & 3054 (7) & 4457 (3) & 457 (16) \\ C(14) & 2468 (2) & 3054 (7) & 4457 (3) & 457 (16) \\ C(14) & 2468 (2) & 3054 (7) & 4457 (3) & 457 (16) \\ C(14) & 2468 (2) & 3054 (7) & 4157 (2) & 457 (16) \\ C(16) & 1116 (6) & 1116 (6) & 1518 (2) & 445 (16) \\ C(17) & 618 (2) & 801 (6) & 5309 (2) & 344 (13) & C(23) & 4637 (1) & -1890 (6) \\ C(16) & 618 (2) & 801 (6) & 5309 (2) & 344 (13) & C(23) & 4637 (1) & -1890 (6) \\ C(16) & 618 (2) & 801 (6) & 5309 (2) & 344 (13) & C(23) & 4637 (1) & -1890 (6) \\ C(16) & 618 (2) & -3041 (5) & 6055 (2) & 317 (12) & C(24) & 4532 (2) & 3438 (1) & 396 (2) \\ C(16) & 1031 (2) & -3041 (5) & 6055 (2) & 314 (13) & C(23) & 4637 (1) & 2320 (6) & 738 (2) & 44.9 (1) \\ C(20) & 1031 (2) & -3041 (5) & 6055 (2) & 314 (13) & C(23) & 4635 (1) & 1352 (6) & -386 (2) \\ C(20) & 1031 (2) & -3041 (5) & 6055 (2) & 314 (13) & C(28) & 4656 (1) & 1352 (6) & -386 (2) \\ C(20) & 1031 (2) & -3041 (5) & 6055 (2) & 314 (13) & C(28) & 4656 (1) & 1152 (6) & -386 (2) & 359 (9) \\ C(23) & 1361 (2) & -6377 (7) & 7664 (3) & 5.63 (16) \\ C(23) & 1361 (2) & -6377 (7) & 7664 (3) & 5.63 (16) \\ C(23) & 1361 (2) & -6377 (7) & 7664 (3) & 5.63 (16) \\ C(23) & 1361 (2) & -6377 (7) & 7664 (3) & 5.63 (16) \\ C(23) & 1353 (2) & -3401 (6) & 1423 (6) & -1423 (6) & -1424 (6) \\ C(23) & 1351 (2) & -4634 (6) & -1642 (7) & -1644 (6) & -1646 (6) \\ C(23) & 1351 (2) & -4634 (6) & -1642 (7) & -1644 (6) & -1644 (6) & -1644 (6) \\ C(23) & -3324 (6) & 576 (6) & 3524 (6) & 156 (1) \\ C(23) & -3324 (6) & 576 (6) & 352 (6) & 335 (16) & N(2)-C(27) & 1.484 (6) & 1.442 (7) & -1246 (6) \\ C(23) & -3324 (6) & 576 (6) & 355 (6) & 100 (-1633 (6) & -1337 (6) & -1336 (6) & -1336 (6) \\ C(23) & -3324 (6) & 5$	C(6)	202 (2)	6922 (7)	3524 (3)	6.61 (21)	C(12)	2740 (2)	-4959 (5)	2360 (3)	5-62 (14)
$ \begin{array}{c} C(0) & 133 (2) & 7156 (6) & 490 (2) & 422 (14) & C(15) & 4037 (1) & -5414 (4) & 2564 (2) & 2464 (2) & 4457 (12) \\ C(10) & 1916 (2) & 6208 (6) & 5064 (2) & 442 (13) & C(17) & 4000 (2) & -4391 (4) & 2568 (2) & 4-23 (11) \\ C(13) & 2448 (2) & 4396 (7) & 4477 (12) & 2448 (10) & C(19) & 3740 (1) & 1746 (1) & 1279 (2) & 4438 (1) \\ C(13) & 2448 (2) & 4396 (7) & 4477 (12) & 2448 (10) & C(19) & 3740 (1) & 1746 (1) & 1279 (2) & 4438 (1) \\ C(15) & 738 (2) & 1214 (5) & 4457 (2) & 3.77 (13) & C(21) & 4510 (1) & -784 (4) & 1092 (2) & 4.45 (1) \\ C(16) & 1026 (2) & 2107 (6) & 5212 (2) & 349 (13) & C(22) & 4515 (1) & -1848 (4) & 1092 (2) & 4.45 (1) \\ C(16) & 1026 (2) & -1908 (5) & 5096 (2) & 3.44 (13) & C(22) & 4515 (1) & -1848 (4) & 1998 (4) & 6424 (6) & 6424 (13) \\ C(20) & 1036 (1) & -3281 (3) & 6596 (2) & 3.44 (13) & C(23) & 4432 (2) & 3290 (6) & -328 (3) & -424 (14) \\ C(20) & 1036 (1) & -3281 (3) & 6596 (2) & 3.40 (12) & C(27) & 4004 (2) & 1061 (5) & -528 (3) & -528 (13$	C(7)	438 (2)	8295 (7) 8421 (6)	3581 (3)	6+59 (21) 5+19 (17)	C(13)	2344 (2)	4907 (6) 5554 (7)	1777 (3)	7+92 (20) 8+68 (21)
C(10) $[633 (2) 498 (7) 4714 (3) 5-71 (18) C(16) 4114 (2) -4502 (4) 2266 (2) 4-67 (12) C(12) 1979 (2) 448 (6) 4429 (6) 4421 (5) C(17) 4002 (2) -319 (4) 2268 (2) 4-23 (11) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$	C(8) C(9)	1133 (2)	7156 (6)	4302 (2)	4.22 (14)	C(14) C(15)	4057 (1)	-5614 (4)	2584 (2)	4.59 (12)
$ \begin{array}{c} (11) & 129 (2) & 443 (0) & 460 (2) & -420 (10) & 4071 (1) & -191 (0) & 429 (2) & 443 (10) \\ (14) & 2468 (2) & 393 (7) & 4137 (2) & 445 (16) & C(19) & 374 (11) & 114 (4) & 1518 (2) & 445 (11) \\ (14) & 2468 (2) & 393 (7) & 4137 (2) & 445 (16) & C(19) & 374 (11) & 114 (4) & 1518 (2) & 445 (11) \\ (16) & 1262 (2) & 2107 (6) & 5212 (2) & 3-91 (13) & C(22) & 4515 (1) & -784 (4) & 1092 (2) & 443 (11) \\ (16) & 646 (2) & -304 (13) & 509 (2) & 3-12 (13) & C(23) & 4637 (11) & 2106 (4) & 728 (2) & 443 (11) \\ (16) & 646 (2) & -304 (13) & 509 (2) & 3-12 (13) & C(23) & 4637 (11) & 2106 (4) & 728 (2) & 443 (11) \\ (16) & 646 (2) & -304 (13) & 509 (2) & 3-12 (13) & C(23) & 4637 (11) & 2106 (4) & 728 (2) & 443 (11) \\ (16) & 646 (2) & -304 (13) & 509 (2) & 3-12 (13) & C(24) & 443 (13) & (26) & -383 (2) & 730 (17) \\ (22) & 1313 (2) & -1053 (5) & 6504 (2) & 3-40 (12) & C(27) & 4004 (2) & 1061 (5) & -88 (2) & 5-58 (14) \\ (23) & 196 (2) & -5322 (6) & 7144 (2) & 4-36 (13) & C(28) & 4565 (1) & 1252 (6) & 1858 (2) & 3-59 (9) \\ (23) & 196 (2) & -5322 (6) & 7164 (3) & 5-04 (16) & -647 (16) & -647 (17) & -648 (16) & -647 (16) & -647 (16) & -647 (16) & -647 (16) & -248 (16) & -248 (16) & -248 (16) & -248 (16) & -259 (16) & -253 (16) &$	C(10)	1633 (2)	7498 (7)	4714 (3)	5.71 (18)	C(16)	4114 (2)	-4502 (4)	2046 (2)	4.67 (12)
$ \begin{array}{cccccc} \hline C(14) & 249 (2) & 438 (7) & 4529 (3) & 5-15 (16) & C(19) & 3740 (11) & 415 (4) & 1518 (2) & 4-15 (11) \\ \hline C(15) & 780 (2) & 3124 (3) & 4571 (2) & 3771 (3) & C(21) & 4510 (11) & -784 (4) & 1092 (2) & 4-16 (11) \\ \hline C(15) & 780 (2) & 3124 (3) & 4571 (2) & 3771 (3) & C(21) & 4510 (11) & -784 (4) & 1092 (2) & 4-16 (11) \\ \hline C(16) & 626 (2) & -1808 (3) & 3968 (2) & 3-17 (12) & C(23) & 4433 (2) & 3243 (4) & 1349 (2) & 5-48 (14) \\ \hline C(18) & 626 (2) & -1808 (3) & 3968 (2) & 3-17 (12) & C(23) & 4433 (2) & 3241 (4) & 349 (2) & 5-48 (14) \\ \hline C(20) & 1056 (1) & -2612 (3) & 6775 (2) & 244 (11) & C(26) & 3891 (2) & 2303 (6) & -322 (3) & 7-30 (17) \\ \hline C(21) & 1034 (2) & -322 (6) & 7144 (2) & 4-36 (15) \\ \hline C(22) & 1034 (2) & -3522 (6) & 7144 (2) & 4-36 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (14) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (14) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -6537 (7) & 7624 (3) & 5-48 (15) \\ \hline C(23) & 1395 (2) & -1724 (4) & 349 (15) \\ \hline C(23) & -1374 (4) & 5496 (15) & -1724 (4) & 1472 (6) & 1-472 (6) \\ \hline C(3) & -1378 (6) & 1-724 (4) & 329 (15) \\ \hline C(24) & -2334 (4) & 667 (3) & -4922 (4) & 324 (12) & N(1)-C(2) & 1-431 (7) & 1-427 (6) & 1-424 (5) \\ N(4) & -3774 (3) & 1374 (4) & -463 (6) (1) & 100 (1) & 1474 (6) & 1-426 (5) \\ N(4) & -3774 (3) & 1374 (4) & -160 (14) & 3-44 (15) \\ N(4) & -3774 (3) & 1374 (4) & -160 (14) & 3-44 (15) \\ N(4) & -3774 (3) & 1374 (4) & -160 (14) & 3-44 (15) \\ N(4) & -3774 (3) & 1374 (4) & -160 (14) & 3-44 (15) \\ N(4) & -3774 (3) & 1374 (4) & -160 (14) & 3-44 (16) \\ C(2) & -2474 (4) & 3244 (4) & -160 (14) & 3-44 (16) \\ N$	C(11) C(12)	1976 (2)	4815 (6)	4660 (2)	4.20 (14)	C(17) C(18)	4002 (2) 3773 (1)	3191 (4) 975 (4)	2097 (2)	4.03 (10)
$ \begin{array}{c} C(14) & 248 & (2) & 399 & (1) & 481 & (2) & -771 & (13) & C(20) & 424 & (11) & -485 & (4) & 129 & (2) & 2.74 & (11) \\ C(17) & 180 & (2) & 801 & (6) & 5399 & (2) & 3.44 & (13) & C(23) & 443 & (1) & -199 & (6) & 199 & (2) & 4.49 & (11) \\ C(18) & 628 & (2) & -3094 & (5) & 6699 & (2) & 3.12 & (12) & C(23) & 443 & (2) & 1.26 & (4) & 728 & (2) & 4.49 & (2) \\ C(19) & 869 & (2) & -3094 & (5) & 6699 & (2) & 3.12 & (12) & C(23) & 443 & (2) & 2.36 & (4) & 349 & (2) & 5.48 & (14) \\ C(20) & 1368 & (1) & -2812 & (5) & 6699 & (2) & 3.34 & (13) & C(26) & 4380 & (2) & 2321 & (6) & -828 & (3) & 5.48 & (14) \\ C(21) & 1313 & (2) & -1061 & (5) & 6694 & (2) & 3.34 & (13) & C(27) & 4004 & (2) & 1061 & (5) & -85 & (2) & 5.58 & (15) \\ C(23) & 1364 & (2) & -6397 & (7) & 764 & (3) & 5.48 & (18) \\ C(23) & 1362 & (2) & -2332 & (5) & 706 & (2) & 3.48 & (15) \\ C(24) & 1352 & (2) & -2333 & (5) & 706 & (2) & 3.48 & (15) \\ C(25) & 1353 & (2) & -2333 & (5) & 706 & (2) & 3.48 & (15) \\ C(26) & 2133 & (2) & -2333 & (5) & 706 & (2) & 3.48 & (15) \\ C(26) & 2133 & (2) & -2333 & (5) & 706 & (2) & 3.48 & (15) \\ C(26) & 2133 & (2) & -2333 & (5) & 706 & (2) & 3.48 & (15) \\ C(26) & 1238 & (4) & -6497 & (7) & 764 & (4) & 3.50 & (12) & N(1) - C(3) & 1.441 & (7) & 1.473 & (6) & 1.442 & (5) \\ C(27) & 1449 & (2) & -4603 & (6) & 1.712 & (4) & 3.50 & (12) & N(1) - C(3) & 1.421 & (6) & 1.423 & (5) \\ N(1) & -1378 & (6) & 6667 & (3) & -1724 & (6) & 3.20 & (13) & N(1) - C(13) & 1.421 & (6) & 1.442 & (6) \\ N(1) & -1378 & (6) & 1325 & (6) & -4647 & (6) & 5.20 & (13) & N(1) - C(13) & 1.443 & (6) & 1.442 & (6) \\ C(1) & -1373 & (6) & 11274 & (6) & -1644 & (6) & 3.20 & (13) & N(1) - C(13) & 1.443 & (6) & 1.442 & (6) \\ C(1) & -1378 & (6) & 11274 & (6) & -1644 & (6) & 3.20 & (13) & N(1) - C(23) & 1.472 & (6) & 1.443 & (6) \\ C(1) & -1378 & (6) & 11274 & (6) & -1644 & (6) & 3.20 & (13) & N(1) - C(23) & 1.472 & (6) & 1.448 & (9) & 1.442 & (6) \\ C(1) & -1373 & (6) & 11274 & (6) & -1644 & (6) & 3.20 & (13) & N(1) - C(23) & 1.472 & (6) & 1.448 & (6) & 1.446 & (6) \\ C(2) & $	C(13)	2419 (2)	4386 (7)	4529 (3)	5.15(16)	C(19)	3740 (1)	111 (4)	1518 (2)	4.15 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) C(15)	2468 (2) 780 (2)	3095 (7)	4187 (2)	3.77 (13)	C(20) C(21)	4240 (1)	465 (4) 	1279 (2)	4.16 (11)
$ \begin{array}{c} c_{117} & 681 (2) & 801 (6) & 500 (2) & 4-44 (11) & c_{123} & 4627 (1) & 2206 (4) & 728 (2) & 4-18 (1) \\ c_{119} & 806 (1) & -201 (2) & 6757 (2) & 2144 (11) & c_{123} & 4537 (1) & 2303 (6) & -482 (3) & 7.20 (17) \\ c_{120} & 1031 (2) & -1063 (5) & 6604 (2) & 3-40 (12) \\ c_{120} & 1031 (2) & -1063 (5) & 6604 (2) & 3-40 (12) \\ c_{120} & 1031 (2) & -1063 (5) & 6604 (2) & 3-40 (12) \\ c_{120} & 1034 (2) & -1063 (5) & 6604 (2) & 3-40 (12) \\ c_{120} & 1034 (2) & -1063 (5) & 6604 (2) & 3-40 (12) \\ c_{120} & 1036 (2) & -552 (6) & 7144 (2) & 4-36 (13) \\ c_{120} & -6537 (7) & 764 (3) & 5-63 (18) \\ c_{120} & -6537 (7) & 764 (3) & 5-63 (18) \\ c_{120} & -6337 (7) & 7664 (3) & 5-63 (18) \\ c_{120} & -6338 (2) & -3393 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (5) & 706 (2) \\ c_{120} & 1333 (2) & -6339 (2) & -738 (2) \\ c_{120} & -2339 (5) & 736 (2) & 3-68 (18) \\ c_{120} & -2339 (5) & 736 (2) & 3-68 (18) \\ c_{120} & -2339 (5) & 736 (2) & 3-68 (18) \\ c_{120} & -4333 (5) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -$	C(16)	1026 (2)	2107 (6)	5212 (2)	3.91 (13)	C(21) C(22)	4515(1)	-1809 (4)	1699 (2)	4.39 (11)
	C(17)	681 (2) 626 (2)	801 (6) 	5309 (2)	3·64 (13) 3·17 (12)	C(23)	4627 (1) 4532 (2)	2206 (4) 3493 (4)	728 (2) 349 (2)	4.19 (11) 5.48 (14)
$ \begin{array}{c} c_{(20)} & 036(1) - 2612(5) & 675(2) & 244(11) & c_{(26)} & 3891(2) & 2303(6) & -528(3) & 7-20(17) \\ c_{(21)} & 1313(2) - 1065(5) & 6694(2) & 3-40(12) & c_{(27)} & 4094(2) & 1061(5) & -85(2) & 3-59(4) \\ c_{(24)} & 1361(2)6377(7) & 7614(3) & 5-64(16) \\ c_{(25)} & 1353(2)6324(7) & 7614(3) & 5-64(16) \\ c_{(25)} & 1353(2)6324(7) & 7614(3) & 5-64(16) \\ c_{(26)} & 1552(2)2339(5) & 7102(2) & 4-45(15) \\ c_{(26)} & 1532(2)2339(5) & 7102(2) & 4-45(15) \\ c_{(26)} & 1532(2)2339(5) & 7102(2) & 4-45(15) \\ c_{(26)} & 1532(2)2339(5) & 7102(2) & 4-45(15) \\ c_{(26)} & 1232(4) & 1533(5) & - \\ c_{(26)} & 1232(4) & 1533(5) & - \\ c_{(26)} & 1233(6) & 1274(4) & 1434(2) & 5-95(5) & 1-218(6) & 1-234(6) \\ r_{(11)} & -1338(4) & 8066(3) & -1724(4) & 3-20(15) & N(1)-C(15) & 1-489(6) & 1-420(6) & 1-422(5) \\ N(3) & -22475(5) & 2325(4) & -6447(4) & 3-270(18) & N(1)-C(15) & 1-489(6) & 1-460(6) & 1-4212(6) \\ c_{(11)} & -1533(6) & 1274(5) & -18649(5) & 4-55(19) & N(2)-C(18) & 1-470(6) & 1-4217(7) & 1-464(6) \\ c_{(2)} & -1117(5) & 10036(4) & -1745(5) & 3-35(16) & N(2)-C(23) & 1-447(6) & 1-442(6) \\ c_{(3)} & -1819(5) & 3248(4) & -1601(4) & 3-94(17) & N(3)-C(23) & 1-427(6) & 1-432(3) & 1-446(5) \\ c_{(3)} & -819(5) & 3248(4) & -1601(4) & 3-94(17) & N(3)-C(23) & 1-427(6) & 1-432(17) & 1-466(5) \\ c_{(2)} & -186(5) & 6428(4) & -184(2) & 20(15) & N(2)-C(18) & 1-470(6) & 1-427(7) & 1-466(5) \\ c_{(3)} & -819(5) & 3248(4) & -1601(4) & 3-94(17) & N(3)-C(23) & 1-427(6) & 1-431(6) & 1-432(6) \\ c_{(3)} & -819(5) & 3248(4) & -1601(4) & 3-94(17) & N(3)-C(23) & 1-427(6) & 1-432(5) \\ c_{(3)} & -849(5) & 6428(2) & 1616(5) & 442(20) & C(1)-C(2) & 1-379(6) & 1-332(2) & 1-463(5) \\ c_{(4)} & -7225(6) & 3256(5) & 1124(6) & 1447(6) & 1-427(6) & 1-328(6) & 1-337(6) & 1-337(6) \\ c_{(11)} & -2326(6) & 326(5) & 11146(6) & 442(20)$	C(19)	869 (2)	-3094 (5)	6095 (2)	3.12 (12)	C(24) C(25)	4330 (2)	3221 (5)	-468 (3)	6.42 (16)
	C(20)	1036 (1)	-2612 (5)	6775 (2)	2.84 (11)	C(26)	3891 (2)	2303 (6)	-528(3) -85(2)	7-20 (17)
$\begin{array}{ccccc} c_{123} & 106 (c) & -532 (c) & 7144 (c) & 4-36 (15) \\ c_{123} & 1959 (c) & -6397 (f) & 7654 (13) & 5-64 (18) \\ c_{127} & 1849 (c) & -4003 (6) & 71002 (c) & 4-45 (15) \\ c_{127} & 1849 (c) & -4003 (6) & 71002 (c) & 4-45 (15) \\ c_{127} & 1849 (c) & -4003 (6) & 71002 (c) & 4-45 (15) \\ c_{127} & 1849 (c) & -4003 (6) & 71002 (c) & 3-66 (12) \\ c_{128} & 253 (c) & -2339 (c) & 7005 (c) & 3-66 (12) \\ c_{128} & 253 (c) & -2339 (c) & 7005 (c) & 3-66 (12) \\ c_{12} & -4322 (c) & 5913 (c) & -6522 (c) & 3-66 (12) \\ c_{11} & -1373 (6) & -1733 (6) & -1733 (6) & -1733 (6) \\ c_{12} & -4322 (c) & 5913 (c) & -6522 (c) & 4-59 (c) & 1-416 (c) & 1-423 (c) \\ r_{11} & -1375 (c) & 806 (c) & -1724 (c) & 3-56 (c) & 100 (c) & -120 (c) & 1-420 (c) & 1-423 (c) \\ r_{13} & -2206 (c) & 666 (c) & -4964 (c) & 3-50 (c) & r_{12} (c) & 1-40 (c) & 1-420 (c) & 1-423 (c) \\ r_{13} & -2207 (c) & 533 (c) & -6866 (c) & 4-57 (c) & N(1)-C(4) & 1-420 (c) & 1-420 (c) & 1-423 (c) \\ r_{13} & -2207 (c) & 1315 (c) & -6866 (c) & 4-57 (c) & N(1)-C(4) & 1-430 (c) & 1-460 (c) & 1-466 (c) \\ r_{13} & -2207 (c) & 11274 (c) & 3-66 (c) & 4-57 (c) & N(2)-C(17) & 1-461 (c) & 1-460 (c) & 1-464 (c) \\ r_{13} & -1375 (c) & 11234 (c) & -1646 (c) & 304 (15) & N(0)-C(23) & 1-447 (c) & 1-451 (c) & 1-463 (c) \\ r_{14} & -152 (c) & 1237 (c) & 5662 (d) & 1041 (c) & 304 (17) & N(0)-C(23) & -1475 (c) & 1-431 (c) & 1-436 (c) \\ r_{13} & r_{12} & r_{13} \\ r_{13} & -277 (c) & 5662 (d) & 1041 (c) & 3-35 (c) & N(0)-C(23) & -1476 (c) & 1-432 (c) & 1-433 (c) \\ r_{13} & -277 (c) & 5662 (d) & 1041 (c) & 3-35 (c) & N(0)-C(23) & -1476 (c) & 1-331 (c) & 1-446 (c) \\ r_{13} & r_{$	C(21) C(22)	1024 (2)	140 (5)	6375 (2)	3.51 (13)	C(27) C(28)	4565 (1)	1252 (4)	1868 (2)	3.59 (9)
$ \begin{array}{c} C(4) & 1981 (2) & -637 (7) & 7607 (3) & 548 (18) \\ C(25) & 2135 (2) & -6302 (7) & 7607 (2) & 348 (18) \\ C(26) & 358 (2) & -4031 (6) & 7102 (2) & 445 (15) \\ C(26) & 358 (2) & -2329 (5) & 7069 (2) & 308 (12) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	C(23)	1096 (2)	-5322 (6)	7144 (2)	4-36 (15) 5-63 (18)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(24) C(25)	1895 (2)	6597 (7)	7632 (3)	5.68 (18)					
$\begin{array}{ccccc} (22) & 189 (2) & -4003 (6) & 1102 (2) & 4-10 (12) & 1100 (2) & 4-10 (12) & 1100 (2) & 4-10 (12) & 1100 (2) & 4-10 (12) & 1100 (2) & 4-10 (12) & 1100 (2) & 4-10 (12) & 1100 (2) $	C(26)	2135 (2)	-5024 (7)	7614 (3)	5.04(16)	Table 3.	Bond length:	s (Å) involv	ing non-H	atoms
	C(27) C(28)	1849 (2) 585 (2)	-2339 (5)	7069 (2)	3.08 (12)	1 4010 01	2011 101.8			(-)
$ \begin{array}{c} Compound (B) \\ C1 & 2871 (1) & 4645 (1) & 1434 (2) & 5-95 (5) & C-1C (6) & -1738 (6) & -0.224 (4) \\ O & -4325 (4) & 5919 (3) & -8622 (3) & 4-50 (12) & O-C (28) & 1-218 (6) & 1-215 (6) & 1-224 (6) \\ S1 & 1218 (6) & 1-215 (6) & 1-224 (6) (5) \\ S1 & 220 (4) & 6667 (3) & -4962 (4) & 3-21 (12) & O-C (28) & 1-218 (6) & 1-420 (6) & 1-443 (5) \\ S1 & -2075 (5) & 3236 (4) & -6447 (4) & 5.70 (18) & N(1)-C (15) & 1-469 (6) & 1-460 (6) & 1-463 (5) \\ S1 & -2075 (5) & 3236 (4) & -6447 (4) & 5.70 (18) & N(1)-C (15) & 1-469 (6) & 1-460 (7) & 1-466 (5) \\ S1 & -2075 (5) & 3236 (4) & -1649 (5) & 4.557 (15) & N(2)-C (18) & 1-470 (6) & 1-460 (7) & 1-466 (6) \\ C1 & -1593 (6) & 11274 (5) & -1649 (5) & 4.557 (19) & N(2)-C (18) & 1-470 (6) & 1-471 (8) & 1-466 (6) \\ C2 & -1117 (5) & 10036 (4) & -1745 (5) & 3.557 (16) & N(3)-C (20) & 1-492 (5) & 1-464 (6) & 1-460 (7) \\ C3 & -1819 (5) & 5344 (4) & -1661 (4) & 3.04 (15) & N(3)-C (27) & 1-469 (7) & 1-481 (9) & 1-53 (2) & 1-448 (6) \\ C4 & -725 (5) & 7297 (4) & -485 (4) & 2.94 (15) & N(3)-C (27) & 1-469 (7) & 1-488 (6) & 1-481 (6) \\ C4 & -725 (5) & 5682 (4) & 1041 (5) & 3.94 (17) & N(4)-C (23) & -1 & 176 (9) & 1-52 (1) & 1-453 (5) \\ C6 & 12227 (5) & 5682 (4) & 1041 (5) & 3.94 (17) & N(4)-C (23) & -1 & 176 (9) & 1-52 (1) & 1-453 (5) \\ C7 & 633 (6) & 576 (5) & 1925 (5) & 4.484 (19) & N(4)-C (23) & -1 & 176 (9) & 1-52 (1) & 1-453 (5) \\ C8 & -641 (6) & 66226 (5) & 1616 (5) & 4.42 (20) & C(1)-C (2) & 1-379 (8) & 1-338 (7) & 1-338 (7) \\ C1 & -2782 (6) & 8260 (5) & -211 (6) & 4.80 (22) & C(2)-C (3) & 1-366 (7) & 1-390 (9) & 1-393 (5) \\ C1 & -326 (5) & 9885 (5) & -1124 (6) & 4.82 (20) & C(1)-C (2) & 1-398 (8) & 1-374 (19) & 1-358 (8) \\ C1 & -327 (6) & 1181 (5) & -1412 (6) & 5.24 (21) & C(3)-C (1) & 1-318 (8) & 1-377 (10) & 1-358 (8) \\ C1 & -327 (6) & 1181 (5) & -1412 (6) & 5.24 (21) & C(3)-C (21) & 1-388 (8) & 1-374 (7) & 1-358 (8) \\ C1 & -327 (6) & 1181 (5) & -1412 (6) & 5.24 (21) & C(3)-C (21) & 1-318 (7) & 1-368 (8) & 1-338 (7) \\ C1 & -328 (6) & 533 (4) & -5928 (4) & -5928 (4) & 3.53 (15) &$	0(1)						(A)	(B)	(<i>B′</i>) *	(C)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound (B)	2971(1)	4645 (1)	1434 (2)	5.95 (5)	$C_{-}C(1)$	1.733 (6)	1.738 (5)		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	-4325 (4)	5919 (3)	-8626 (3)	4-50 (12)	O-C(28)	1.218 (6)	1-215 (6)		1.234 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)	-1378(4)	8066 (3) 6667 (3)	-1724(4) -4962(4)	3.05 (12)	N(1) - C(3) N(1) - C(4)	1.418 (7)	1.437 (6)		1.423 (5)
	N(2) N(3)	-2475 (5)	3236 (4)	-6447 (4)	5.70 (18)	N(1)-C(15)	1.469 (6)	1.460 (8)		1.470 (4)
	N(4)	-3974 (5)	3915 (4)	-8568 (4)	4.55 (15)	N(2) - C(17) N(2) - C(18)	1.401 (0)	1.452 (7)		1.463 (5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) C(2)	-1117 (5)	10036 (4)	-1745 (5)	3.55 (16)	N(2) - C(22)	1.457 (6)	1.471 (8)		1-463 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	-1819 (5)	9348 (4)	-1601 (4)	3.04(15)	N(3)-C(20)	1.493 (5)	1.464 (6)	1.53 (2)	1.469 (5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) C(5)	-725 (5)	6433 (4)	-156(5)	3.20 (15)	N(3)-C(27)	1.469 (7)	1.488 (9)	1.48 (2)	1.463 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	1227 (5)	5682 (4)	1041 (5)	3.94 (17)	N(4) - C(23)	1 376 (6)	1.476 (9)	1.52 (1)	1.453 (5)
$ \begin{array}{c} C(9) & -1367 (5) & 7404 (4) & 416 (5) & 3.55 (17) & C(1)-C(14) & 1.389 (8) & 1.350 (10) & 1.361 (8) \\ C(10) & -2782 (6) & 8260 (5) & 211 (6) & 4.80 (22) & C(2)-C(3) & 1.366 (7) & 1.390 (9) & 1.393 (8) \\ C(11) & -3644 (5) & 9088 (5) & -1124 (6) & 4.82 (20) & C(3)-C(12) & 1.405 (7) & 1.370 (8) & 1.378 (8) \\ C(12) & -2965 (5) & 9885 (5) & -1345 (5) & 3.79 (17) & C(4)-C(5) & 1.391 (7) & 1.382 (6) & 1.397 (6) \\ C(13) & -3429 (6) & 11133 (5) & -1252 (5) & 4.82 (19) & C(4)-C(9) & 1.388 (7) & 1.405 (9) & 1.398 (8) \\ C(14) & -7279 (6) & 11815 (5) & -1412 (6) & 5.24 (21) & C(5)-C(6) & 1.391 (8) & 1.377 (10) & 1.357 (8) \\ C(15) & -882 (5) & 7672 (4) & -2795 (5) & 3.54 (17) & C(6)-C(7) & 1.343 (8) & 1.377 (10) & 1.357 (8) \\ C(16) & -1922 (6) & 8322 (5) & -4177 (5) & 4.76 (22) & C(7)-C(8) & 1.361 (7) & 1.368 (8) & 1.338 (8) \\ C(17) & -3134 (6) & 7951 (5) & -4754 (5) & 4.53 (19) & C(8)-C(9) & 1.408 (7) & 1.391 (7) & 1.410 (8) \\ C(18) & -2168 (5) & 6333 (4) & -5928 (4) & 3.23 (15) & C(9)-C(10) & 1.513 (7) & 1.510 (8) & 1.498 (8) \\ C(20) & -2962 (5) & 4563 (4) & -6097 (4) & 3.53 (15) & C(11)-C(12) & 1.528 (7) & 1.505 (10) & 1.447 (8) \\ C(21) & -3783 (5) & 5100 (6) & -5641 (5) & 4.44 (20) & C(12)-C(13) & 1.370 (8) & 1.395 (8) & 1.414 (7) \\ C(22) & -4063 (5) & 6422 (5) & -5480 (5) & 4.19 (19) (213)-C(14) & 1.368 (9) & 1.389 (11) & 1.438 (8) \\ C(21) & -3783 (5) & 5100 (6) & -5641 (5) & 4.46 (27) & C(15)-C(16) & 1.512 (6) & 1.513 (7) & 1.522 (6) \\ C(24) & -2943 (9) & 1679 (7) & -7833 (8) & 5.28 (33) & C(16)-C(17) & 1.523 (8) & 1.599 (10) & 1.512 (6) \\ C(24) & -2943 (9) & 1679 (7) & -7833 (8) & 5.28 (33) & C(16)-C(17) & 1.533 (6) & 1.513 (7) & 1.524 (6) \\ C(25) &2375 (11) & 779 (9) & -6575 (9) & 6.34 (39) & C(18)-C(19) & 1.513 (6) & 1.513 (7) & 1.524 (6) \\ C(25) &2384 (18) & 2710 (15) & -7802 (16) & 4.79 (61) & C(21)-C(22) & 1.513 (6) & 1.513 (7) & 1.524 (6) \\ C(24) &2387 (13) & 710 (15) & -7802 (16) & 4.79 (61) & C(21)-C(22) & 1.513 (6) & 1.514 (5) & 1.529 (5) \\ C(24) &2596 (26) & 934 (15) & -6463 (18) & 7.14 ($	C(7)	633 (6) 641 (6)	5760 (5)	1952 (5)	4.48 (19)	C(1) - C(28)	1.379 (8)	1.385 (7)		1.384 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	-1367 (5)	7404 (4)	416 (5)	3.55 (17)	C(1) - C(14)	1.389 (8)	1.350 (10)		1.393 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	-2782 (6) -3644 (5)	8260 (5)	211 (6) 	4.80 (22) 4.82 (20)	C(2) = C(3) C(3) = C(12)	1.300 (7)	1.370 (8)		1.378 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) C(12)	-2965 (5)	9885 (5)	-1345 (5)	3.79 (17)	C(4)-C(5)	1.391 (7)	1.382 (6)		1.397 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	-3429 (6)	11133 (5)	-1252(5) -1412(6)	4.82 (19) 5.24 (21)	C(4) = C(9) C(5) = C(6)	1.388 (7)	1.374 (7)		1.395 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) C(15)	-882 (5)	7672 (4)	-2795 (5)	3.54 (17)	C(6)–C(7)	1.343 (8)	1.377 (10)		1.357 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	-1922 (6)	8322 (5)	-4177 (5)	4.76 (22)	C(7) - C(8) C(8) - C(9)	1-361 (7)	1.368 (8)		1-410 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) C(18)	-2168(5)	6333 (4)	-5928 (4)	3.23 (15)	C(9)-C(10)	1.513 (7)	1.510 (8)		1.498 (8)
$\begin{array}{ccccccc} C(20) & -2962 (5) & 4563 (4) & -049 (4) & 533 (15) & (11) - (12) & 1-370 (8) & 1-95 (8) & 1-414 (7) \\ C(21) & -3783 (5) & 5100 (6) & -5641 (5) & 4.44 (20) & C(12) - C(13) & 1-370 (8) & 1-395 (8) & 1-414 (7) \\ C(22) & -4063 (5) & 6422 (5) & -5480 (5) & 4+19 (19) & C(13) - C(14) & 1-368 (9) & 1-389 (11) & 1-384 (8) \\ C(23)^{\dagger} & -3545 (8) & 2944 (7) & -7493 (7) & 4.68 (27) & C(15) - C(16) & 1-512 (6) & 1-516 (6) & 1-512 (6) \\ C(24)^{\dagger} & -2943 (9) & 1679 (7) & -7853 (8) & 5.28 (33) & C(16) - C(17) & 1-523 (8) & 1-509 (10) & 1-512 (6) \\ C(25)^{\dagger} & -2375 (11) & 779 (9) & -6575 (9) & 6.48 (39) & C(18) - C(19) & 1-513 (6) & 1-513 (7) & 1-524 (6) \\ C(26)^{\dagger} & -1351 (10) & 1182 (8) & -5367 (9) & 6.35 (37) & C(19) - C(20) & 1-531 (6) & 1-540 (9) & 1-524 (6) \\ C(26)^{\dagger} & -2019 (8) & 2509 (7) & -5138 (7) & 4-61 (27) & C(20) - C(21) & 1-533 (6) & 1-525 (8) & 1-536 (5) \\ C(28) & -3837 (5) & 4907 (4) & -8029 (4) & 3.37 (15) & C(20) - C(28) & 1-554 (7) & 1-541 (5) & 1-529 (5) \\ C(23)^{\dagger} & -2884 (18) & 2710 (15) & -7802 (16) & 4-79 (61) & C(21) - C(22) & 1-510 (6) & 1-499 (9) & 1-520 (6) \\ C(24)^{\dagger} & -3603 (21) & 1953 (17) & -7699 (17) & 5.44 (73) & C(23) - C(24) & 1-522 (8) & 1-511 (11) & 1-46 (4) & 1-495 (6) \\ C(25)^{\dagger} & -2596 (26) & 934 (15) & -6463 (18) & 7.14 (95) & C(24) - C(25) & 1-515 (8) & 1-547 (13) & 1-59 (2) & 1-538 (6) \\ C(26)^{\dagger} & -2124 (26) & 1507 (19) & -5169 (17) & 6.49 (5) & C(25) - C(26) & 1-513 (9) & 1-572 (14) & 1-51 (3) & 1-517 (8) \\ C(26)^{\dagger} & -2124 (26) & 1507 (19) & -5169 (17) & 6.81 (95) & C(25) - C(26) & 1-513 (9) & 1-572 (14) & 1-51 (6) \\ C(26)^{\dagger} & -2124 (26) & 1507 (19) & -5169 (17) & 6.81 (95) & C(25) - C(26) & 1-513 (7) & 1-538 (12) & 1-47 (4) & 1-516 (8) \\ \end{array}$	C(19)	-1762 (5)	4988 (4)	-6081(5)	3.45 (16)	C(10)-C(11) C(11)-C(12)	1.477 (8)	1.528 (8)		1.510 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20) C(21)	-2962 (5) -3783 (5)	4363 (4) 5100 (6)	-5641(5)	4.44 (20)	C(12)-C(13)	1.370 (8)	1.395 (8)		1.414 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	-4063 (5)	6422 (5)	-5480 (5)	4.19 (19)	C(13)-C(14)	1.368 (9)	1.389 (11)		1.384 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(23)^{\dagger}$	-3545(8) -2943(9)	2944 (7) 1679 (7)	-7853 (8)	5.28 (33)	C(16)-C(17)	1.523 (8)	1.509 (10)		1.512 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)†	-2375 (11)	779 (9)	-6575 (9)	6.48 (39)	C(18) - C(19)	1-513 (6)	1·513 (7) 1·540 (9)		1+524 (6) 1+526 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)† C(27)†	-1351 (10) -2019 (8)	1182 (8) 2509 (7)	-5138 (7)	4.61 (27)	C(20)-C(21)	1.533 (6)	1.525 (8)		1.536 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	-3837 (5)	4907 (4)	-8029 (4)	3.37 (15)	C(20)-C(28)	1.554 (7)	1.541 (5)		1.529 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23')	-2884 (18) -3603 (21)	2710 (15) 1953 (17)	-7802 (16) -7699 (17)	4·79 (61) 5·44 (73)	C(21)-C(22) C(23)-C(24)	1.522 (8)	1.511 (11)	1.46 (4)	1.495 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25')‡	-2596 (26)	934 (15)	-6463 (18)	7.14 (95)	C(24)-C(25)	1.515 (8)	1-547 (13)	1.59(2)	1.538 (6)
	C(26')‡	-2124(26) -1442(21)	1507 (19) 2293 (17)	-5169 (17) -5317 (18)	6-81 (95) 6-07 (76)	C(23) - C(26) C(26) - C(27)	1.513 (9)	1.538 (12)	1.47 (4)	1.516 (8)

† Population parameter 0.7.‡ Population parameter 0.3.

* Compound (B') concerns that part of the terminal piperidine rings of molecule (B) whose occupancies are 0.3.

Discussion. The atomic parameters for the non-H atoms are given in Table 2.* The bond lengths and angles are respectively listed in Tables 3 and 4. Stereoscopic views of molecules (A), (B) and (C) are shown in Fig. 2 with the atom-numbering schemes (ORTEP, Johnson, 1965). For all compounds, pairs of racemic molecules are connected by paired $O \cdots H(N4)$ hydrogen bonds around the centers of symmetry. The $O \cdots N(4)$ distances are 2.919 (5), 2.860 (5) and

* Lists of structure factors, anisotropic thermal parameters for non-H atoms, coordinates and isotropic thermal parameters for H atoms and selected torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38958 (60 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 4. Bond angles (°) involving non-H atoms

	(A)	(<i>B</i>)	(<i>B'</i>)	(<i>C</i>)
C(3) - N(1) - C(4)	115-1 (4)	115-6 (4)		117.6 (3)
C(3) - N(1) - C(15)	116.2 (4)	116.1 (4)		117.0 (3)
C(4)-N(1)-C(15)	118.1 (3)	117.9 (3)		116.6 (3)
C(17)-N(2)-C(18)	109.7 (3)	112.0 (5)		109.4 (3)
C(17)-N(2)-C(22)	111.4 (4)	108-8 (4)		111.4 (3)
C(18)-N(2)-C(22)	109.5 (4)	108.7 (4)		109.7 (3)
C(20)-N(3)-C(23)	112.3 (3)	106.8 (4)		108.1 (3)
C(20)-N(3)-C(27)	116-5 (4)	118.7 (5)		120.7 (3)
C(23)-N(3)-C(27)	109.5 (4)	109.9 (6)	112.3 (10)	112.1 (3)
C(23)–N(4)–C(28)		110-4 (5)		112.0 (3)
CI - C(1) - C(2)	118.3 (4)			_
CI - C(1) - C(14)	120.0 (5)			
C(2) - C(1) - C(14)	121.6 (5)	120-5 (7)		119.3 (5)
C(1) - C(2) - C(3)	119.1 (5)	119.6 (6)		120-1 (5)
N(1) = C(3) = C(2)	122.3 (5)	121.5 (5)		120.6 (4)
N(1) = C(3) = C(12)	11/-0 (4)	118-2 (6)		118-1 (4)
C(2) = C(3) = C(12)	120.7(5)	120-4 (5)		121.2 (4)
N(1) = C(4) = C(3)	119.8 (4)	119.5 (5)		118.8 (4)
N(1) = C(4) = C(9) C(5) = C(4) = C(9)	122.5 (4)	$121 \cdot 1(4)$		122.5(3)
C(3) = C(4) = C(9) C(4) = C(5) = C(6)	117.8 (4)	119.4 (4)		118.7 (4)
C(-, -C(0) - C(0))	122.2 (3)	120.8 (0)		121.0 (3)
$C_{1} = C_{0} = C_{0} = C_{0}$	_	119.4 (4)		_
C(5) = C(6) = C(7)	119.4 (5)	121.5 (5)		120.0 (5)
C(6) - C(7) - C(8)	119.9 (5)	117.0(5)		118.8 (5)
C(7) - C(8) - C(9)	122.2(5)	124.2 (6)		124.0 (5)
C(4) - C(9) - C(8)	118.4(4)	117.1(5)		117.0 (5)
C(4) - C(9) - C(10)	125.8 (5)	126.9 (4)		125.7 (5)
C(8) - C(9) - C(10)	115.8 (5)	116-0 (6)		117.3 (5)
C(9) - C(10) - C(11)	118.8 (5)	117.9 (6)		119.3 (5)
C(10)C(11)C(12)	113.5 (4)	111.7 (5)		112.1 (5)
C(3)-C(12)-C(11)	117.8 (5)	118-2 (5)		119.6 (4)
C(3)-C(12)-C(13)	118-1 (5)	119-2 (6)		118-0 (5)
C(11)–C(12)–C(13)	124.0 (5)	122.6 (6)		122.4 (5)
C(12)-C(13)-C(14)	122.7 (5)	120.1 (6)		119-8 (5)
C(1)-C(14)-C(13)	117.7 (5)	120-3 (6)		121.6 (5)
N(1) - C(15) - C(16)	111.3 (4)	112.0 (4)		112-8 (3)
C(15) - C(16) - C(17)	110.4 (4)	114.7 (6)		112-2 (3)
N(2) = C(17) = C(16)	112.7 (4)	114.4 (5)		112.4 (3)
N(2) = C(18) = C(19)	112.0 (4)	111.6 (5)		110.5 (3)
U(10) - U(19) - U(20)	114.4 (4)	112.8 (4)		113.0 (3)
N(3) = C(20) = C(19) N(3) = C(20) = C(21)	114.5(4)	$110 \cdot 1(4)$		110.5 (3)
N(3) = C(20) = C(21) N(3) = C(20) = C(28)	104.9 (4)	00.8(3)		00.0 (3)
C(19) = C(20) = C(20)	104.9 (4)	109.7 (4)		109.6 (3)
C(19) = C(20) = C(21)	100.4 (4)	110.7 (4)		112.9 (3)
C(21) - C(20) - C(28)	107.2 (4)	112.1 (4)		110.0 (3)
C(20) - C(21) - C(22)	112.164	114.7 (6)		112.2 (3)
N(2) - C(22) - C(21)	110.6 (4)	111.4(4)		110.2 (3)
N(3) - C(23) - N(4)		98.9 (7)		100.5 (3)
N(3)-C(23)-C(24)	110-4 (4)	109.1 (6)	106-4 (15)	110.8 (3)
N(4)-C(23)-C(24)	—`´	113.6 (7)	106.0 (13)	116.6 (3)
C(23)-C(24)-C(25)	110.8 (5)	107.7 (7)	107.6 (17)	107.6 (3)
C(24)-C(25)-C(26)	109-4 (5)	108.7 (9)	110-4 (14)	111.5 (5)
C(25)-C(26)-C(27)	112.1 (4)	111.3 (7)	110.4 (20)	112.2 (4)
N(3)-C(27)-C(26)	109-9 (4)	105-3 (6)	105-4 (15)	107-4 (4)
OC(28)N(4)	122-4 (5)	126-3 (4)		125.7 (3)
O-C(28)-C(20)	122-4 (4)	125-6 (4)		126-0 (4)
N(4)-C(28)-C(20)	115-2 (4)	108-1 (4)		108.3 (3)

Fig. 3. Stereoscopic view of the terminal piperidine rings of compound (B).

2.837 (4) Å for molecules (A), (B) and (C) respectively. These paired molecules are held together by van der Waals forces to form the crystals.

The conformation of the dibenzazepine ring is asymmetric: the C(10)-C(11) bond of the ethylene moiety is in plane with one benzene ring and is out of plane with the other. The Cl atom of compound (A) is connected to the position meta to N(1) of the out-of-plane benzene ring. On the other hand, the Cl atom of compound (B) is connected to the same position of the in-plane benzene ring. The tilt angles between these benzene rings are 120.1, 119.3 and 128.5° for compounds (A), (B) and (C) respectively. These angles are closer to the results of Post, Kennard & Horn (1975) than to those of Reboul, Cristau, Estienne & Astier (1980). The conformations of the propylene moieties from N(1) to N(2) are quite different for these compounds, as shown in Fig. 2 and by the torsion angles (deposited). For compound (A), the conformations of C(15) - C(17) are trans and trans. For compound (B), they are gauche and gauche. For compound (C), they are gauche and trans. By these twistings, the Cl atoms of compounds (A) and (B) and H(Cl) of compound (C) have approximately the same coordinations to the face of each middle piperidine ring. On the backs of the rings, the carbamovl moieties are situated by the spiro conformations of C(20). The two piperidine rings for each compound have chair forms. The terminal piperidine ring of compound (B) consists of two antipodal parts, C(23) - C(27) and C(23') - C(27)C(27'), whose occupancies are respectively 0.7 and 0.3as shown in Table 2 and Fig. 3. The geometrical isomerism is caused by the triangular-pyramidal configurations of N(3) and N(4). The short bond lengths of N(4)-C(28) for all compounds suggest charge transfer from N(4) to O and affect the formation of hydrogen bonds.

References

- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Acta Cryst. B36, 2108-2112.

55. 69-77.

REBOUL, J. P., CRISTAU, B., ESTIENNE, J. & ASTIER, J. P. (1980). JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee. SAKURAI, T. & KOBAYASHI, K. (1979). Rep. Inst. Phys. Chem. Res.

POST, M. L., KENNARD, O. & HORN, A. S. (1975). Acta Cryst. B31, 1008-1013.

Acta Crvst. (1984). C40, 426-428

(2,2'-Bipyridine)chloro(triphenylphosphine)copper(I) Monohydrate,* C₂₈H₂₃ClCuN₂P.H₂O

BY BRUCE E. GREEN AND COLIN H. L. KENNARD

Department of Chemistry, University of Queensland, Brisbane, Queensland 4067, Australia

GRAHAM SMITH

Department of Chemistry, Queensland Institute of Technology, Brisbane, Queensland 4000, Australia

BRUCE D. JAMES

Department of Inorganic and Analytical Chemistry, Latrobe University, Bundoora, Victoria 3083, Australia

AND ALLAN H. WHITE

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Western Australia 6009. Australia

(Received 14 June 1983; accepted 12 October 1983)

Abstract. $M_r = 535.5$, triclinic, $P\overline{1}$, a = 16.967 (10). b = 9.426 (5), c = 8.712 (5) Å, $\alpha = 65.50$ (4), $\beta =$ 88.23 (5), $\gamma = 89.53$ (5)°, V = 1267 (1) Å³, Z = 2, D_m = 1.39, $D_x = 1.40$ (3) Mg m⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 1.09 \text{ mm}^{-1}$, F(000) = 552, T = 298 K, R = 0.049for 2371 unique reflections. The metal atom is tetrahedrally coordinated to 2,2'-bipyridine [Cu-N 2.076 (5), 2.087 (6) Å; N-Cu-N 79.2 (2)°] Cl [Cu-Cl 2.330 (2) Å] and triphenylphosphine [Cu-P 2.180 (2) Å], and is distorted [N-Cu-Cl 102.9 (2), 104.5 (2)°; N-Cu-P 122.8 (2), 123.2 (1)°; and Cl-Cu-P 117.1 (1)°]. The water molecule is hydrogen bonded to Cl [Cl···O 3.25(1), 3.30(1)Å].

Introduction. Complexes of the type $Cu^{I}(XYZ)$, with X = ligands containing an N-C-C-N group, $Y = Cl^{-1}$ or BH₄, and Z = triphenylphosphine, are currently investigated. The title compound. being [Cu(bpy)Cl(tpp)].H₂O, (I), where bpy = 2,2'-bipyridine and tpp = triphenylphosphine, is the first member of this series. bpy and tpp are used to stabilize Cu^I (Jardine, Rule & Vohra, 1970).

Experimental. (I) prepared by reacting $[(tpp)CuCl]_4$ with bpy in absolute alcohol (Jardine et al., 1970), and

0108-2701/84/030426-03\$01.50

recrystallized from a chloroform-xylene mixture as yellow crystals. Crystal $0.25 \times 0.20 \times 0.13$ mm. D_m by flotation. Syntex $P2_1$ four-circle diffractometer. 15 reflections used for lattice-parameter determination. No absorption or extinction correction. $2\theta_{\text{max}} = 50^{\circ}$. Stan-dard reflections: $I_{400} = 302 (7) \times 10^3$; $I_{020} = 129 (2) \times 10^3$; $I_{003} = 108 (3) \times 10^3$. 3058 reflections measured, 2371 unique $[I > 2.5\sigma(I)]$, 687 unobserved. Cu atom obtained using the TANG direct method of SHELX (Sheldrick, 1976). Remaining atoms located from a weighted difference-Fourier synthesis. H atoms located at the end of the refinement, and set at fixed positions with $U = 0.05 \text{ Å}^2$. Full-matrix least-squares refinement based on F reduced R to 0.049 and wR to 0.049; $w = 2.26/[\sigma^2(F_o) + 0.0003F_o^2]$ (determined by least squares). Maximum and average Δ/σ ratios 2.4 and 0.6. Final difference electron density maximum 0.12, minimum $-0.12 \text{ e} \text{ Å}^{-3}$. Scattering factors: nonhydrogens (Cromer & Mann, 1968), H (Stewart, Davidson & Simpson, 1965).

© 1984 International Union of Crystallography

^{*} Stereochemistry of Rigid Chelate-Metal Complexes. VII. Part VI: Green, Kennard, Smith, James & White (1981).